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ABSTRACT 

Numerous studies have identified EEG patterns associated with 
Flow states. This study investigates whether playing Cubism in a 
VR headset induces Flow, assessing its suitability for a follow-up 
experiment. Flow states were measured using a standardized 
questionnaire, and EEG data were analyzed for correlations with 
established literature. Preliminary results suggest a positive 
relationship between Flow scores and expected EEG patterns. 
However, significant data loss due to noise—likely from improper 
wet electrode placement—raises concerns about reliability. Poor 
electrode contact may have compromised signal quality, limiting 
interpretability. Despite these challenges, the findings contribute to 
understanding Flow states in immersive virtual environments and 
their detection through EEG. 

Index terms: EEG, Flow State, Virtual Reality, Cognitive 
Neuroscience, Cubism. 

1 INTRODUCTION 

Flow state is described as the “sweet spot” between a person’s skill 
level and task difficulty, characterized by a distorted sense of time, 
optimal performance, and deep task engagement. Understanding 
Flow could lead to operationalized, controllable methods for 
enhancing performance across dynamic tasks. Flow states have 
been studied in various activities, including sports, music, and 
gaming. However, research on Flow in puzzle-based gameplay is 
limited, and even fewer studies have explored Flow in VR games—
no known studies have investigated a game which utilities both. 
 
Existing literature on Flow in visuomotor tasks, puzzle games, and 
mental calculations suggests that Flow states correlate with specific 
EEG power changes: decreased delta [1,5] and alpha [1,3,5] waves, 
increased theta [3,4,5] waves, and inconsistent findings regarding 
beta waves—some studies report an increase [1], while others 
report a decrease [3,5]. 
 
This study explores whether EEG can detect Flow states during 
gameplay of Cubism in VR. The goal is to assess the game’s 
suitability for a follow-up experiment in which difficulty 
dynamically adjusts based on EEG-estimated Flow levels, aiming 
to maximize time spent in Flow. To achieve this, EEG data was 
recorded during gameplay, and Flow states were quantified using a 
standardized questionnaire.   

2 METHODS 

2.1 Participants 

The study included 11 right-handed participants (5 males and 6 
females) aged 22 to 28, all of whom had little to no VR experience. 
However, the data from 2 participants had to be excluded due to 
unusually high levels of noise, rendering it unusable. 

2.2 Apparatus 

Participants played the game Cubism using a Meta Quest 2 headset 
for the immersive experience. EEG data was recorded using 19-
channel EEG system with wet electrodes placed according to the 
10-20 system. The EEG signal was collected at a sampling rate of 
250Hz, and data was processed for analysis using Python. 

2.3 Experimental Design 

The experiment followed a within-subject design, where each 
participant played Cubism in a VR environment for 20 minutes. 
Participants were first familiarized with the game mechanics before 
starting the main task. A baseline EEG measurement was taken 
before gameplay, afterwards EEG data was recorded continuously 
during the gameplay. 

2.4 Flow State Measurement 

To quantify Flow state, participants completed the LONG 
Dispositional Flow Scale (DFS-2) [2], immediately following their 
gameplay session. DFS-2 is designed to assess the subjective 
experience of Flow by evaluating factors such as engagement, 
enjoyment, and immersion. 
 

2.5 EEG Data Processing and Analysis 

The EEG data was preprocessed by applying a notch filter to 
remove 50 Hz power line noise and using high-pass (1 Hz) and low-
pass (40 Hz) filters to isolate relevant frequency bands. The power 
spectral density (PSD) for each band was calculated, and any power 
values exceeding 200 μV²/Hz were considered noise and removed. 
 
The power data for each subject were averaged across five brain 
regions (frontal, central, temporal, parietal, and occipital) and 
plotted to visualize changes in power (Fig. 1); change in power was 
calculated by subtracting the baseline power value from the task 
power value, then dividing the result by the baseline power value 
[5]. "Good data" was identified by counting power changes that 
matched expected flow-related patterns from the literature. The 
percentage of “good data” was calculated by dividing the number 
of “good data” points by the total data for each subject, which was 
plotted against their flow score (Fig. 2 and Fig. 3). 
 
Due to uncertainties in beta wave behavior, two interpretations of 
beta changes were tested: a positive change (Fig. 3) and a negative 
change (Fig. 2) as "good data". Each approach was analyzed 
separately to compare the results. 

2.6 Statistical Analysis 

Statistical analysis was conducted to examine the relationship 
between flow scores and EEG power changes. To assess the 
correlation between flow scores and the percentage of “good data”, 
Pearson’s correlation coefficient was calculated. Additionally, 
separate analyses were performed for the two interpretations of beta 
power changes, and the results were compared using scatter plots 
with regression lines. 
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2.7 Initial Results 

The analysis revealed a moderate correlation between EEG power 
changes and participants' flow scores. When beta power decreases 
were considered as the expected pattern, the correlation coefficient 
was r = 0.49. In contrast, when beta power increases were assumed 
to be the expected pattern, the correlation coefficient was slightly 
higher at r = 0.51. 

 
These results suggest that the relationship between EEG activity 
and flow states remains similar regardless of how beta power 
changes are interpreted. While both conditions show a moderate 
correlation, the small difference in coefficients highlights the 
uncertainty surrounding beta power behaviour in flow states. 
Further investigation is needed to determine the most appropriate 
interpretation of beta activity in this context. 

2.8 Discussion, conclusion and future work 

This study examined the relationship between EEG power changes 
and flow states, revealing a moderate correlation. When beta 
decreases were assumed to align with flow, the correlation was r = 
0.49; when increases were assumed, it was r = 0.51. These findings 
suggest a link between EEG and flow but highlight sensitivity to 
beta power assumptions. 

 
Significant data loss due to noise, likely from poor electrode 
placement, compromised signal quality and reduced reliability. I 
have been developing a live impedance measurement feature that 
could help future studies improve electrode placement and real-
time signal monitoring to minimize artifacts. 

 
The uncertainty around beta power behaviour underscores the need 
for further research with larger samples, varied tasks, and refined 
EEG processing. Despite limitations, this study provides 
preliminary evidence linking EEG activity to flow states, 
warranting further investigation. 

 

 

Figure 1: Visualization of EEG power changes (delta: blue, theta: 
orange, alpha: green, beta: red) for random subjects. Green 
values represent "good data" used in the correlation plots.  

 

 

Figure 2: Visualization of the correlation between subjects' flow 
scores and EEG consistency with the literature, under the 
condition where beta power shows a negative change. 

 

 

Figure 3: Visualization of the correlation between subjects' flow 
scores and EEG consistency with the literature, under the 
condition where beta power shows a positive change. 
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