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ABSTRACT

Numerous studies have identified EEG patterns associated with
Flow states. This study investigates whether playing Cubism in a
VR headset induces Flow, assessing its suitability for a follow-up
experiment. Flow states were measured using a standardized
questionnaire, and EEG data were analyzed for correlations with
established literature. Preliminary results suggest a positive
relationship between Flow scores and expected EEG patterns.
However, significant data loss due to noise—likely from improper
wet electrode placement—raises concerns about reliability. Poor
electrode contact may have compromised signal quality, limiting
interpretability. Despite these challenges, the findings contribute to
understanding Flow states in immersive virtual environments and
their detection through EEG.

Index terms: EEG, Flow State, Virtual Reality, Cognitive
Neuroscience, Cubism.

1 INTRODUCTION

Flow state is described as the “sweet spot” between a person’s skill
level and task difficulty, characterized by a distorted sense of time,
optimal performance, and deep task engagement. Understanding
Flow could lead to operationalized, controllable methods for
enhancing performance across dynamic tasks. Flow states have
been studied in various activities, including sports, music, and
gaming. However, research on Flow in puzzle-based gameplay is
limited, and even fewer studies have explored Flow in VR games—
no known studies have investigated a game which utilities both.

Existing literature on Flow in visuomotor tasks, puzzle games, and
mental calculations suggests that Flow states correlate with specific
EEG power changes: decreased delta [1,5] and alpha [1,3,5] waves,
increased theta [3,4,5] waves, and inconsistent findings regarding
beta waves—some studies report an increase [1], while others
report a decrease [3,5].

This study explores whether EEG can detect Flow states during
gameplay of Cubism in VR. The goal is to assess the game’s
suitability for a follow-up experiment in which difficulty
dynamically adjusts based on EEG-estimated Flow levels, aiming
to maximize time spent in Flow. To achieve this, EEG data was
recorded during gameplay, and Flow states were quantified using a
standardized questionnaire.

2 METHODS

2.1 Participants

The study included 11 right-handed participants (5 males and 6
females) aged 22 to 28, all of whom had little to no VR experience.
However, the data from 2 participants had to be excluded due to
unusually high levels of noise, rendering it unusable.
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2.2 Apparatus

Participants played the game Cubism using a Meta Quest 2 headset
for the immersive experience. EEG data was recorded using 19-
channel EEG system with wet electrodes placed according to the
10-20 system. The EEG signal was collected at a sampling rate of
250Hz, and data was processed for analysis using Python.

2.3 Experimental Design

The experiment followed a within-subject design, where each
participant played Cubism in a VR environment for 20 minutes.
Participants were first familiarized with the game mechanics before
starting the main task. A baseline EEG measurement was taken
before gameplay, afterwards EEG data was recorded continuously
during the gameplay.

2.4 Flow State Measurement

To quantify Flow state, participants completed the LONG
Dispositional Flow Scale (DFS-2) [2], immediately following their
gameplay session. DFS-2 is designed to assess the subjective
experience of Flow by evaluating factors such as engagement,
enjoyment, and immersion.

2.5 EEG Data Processing and Analysis

The EEG data was preprocessed by applying a notch filter to
remove 50 Hz power line noise and using high-pass (1 Hz) and low-
pass (40 Hz) filters to isolate relevant frequency bands. The power
spectral density (PSD) for each band was calculated, and any power
values exceeding 200 pV*/Hz were considered noise and removed.

The power data for each subject were averaged across five brain
regions (frontal, central, temporal, parietal, and occipital) and
plotted to visualize changes in power (Fig. 1); change in power was
calculated by subtracting the baseline power value from the task
power value, then dividing the result by the baseline power value
[5]. "Good data" was identified by counting power changes that
matched expected flow-related patterns from the literature. The
percentage of “good data” was calculated by dividing the number
of “good data” points by the total data for each subject, which was
plotted against their flow score (Fig. 2 and Fig. 3).

Due to uncertainties in beta wave behavior, two interpretations of
beta changes were tested: a positive change (Fig. 3) and a negative
change (Fig. 2) as "good data". Each approach was analyzed
separately to compare the results.

2.6 Statistical Analysis

Statistical analysis was conducted to examine the relationship
between flow scores and EEG power changes. To assess the
correlation between flow scores and the percentage of “good data”,
Pearson’s correlation coefficient was calculated. Additionally,
separate analyses were performed for the two interpretations of beta
power changes, and the results were compared using scatter plots
with regression lines.



2.7 Initial Results

The analysis revealed a moderate correlation between EEG power
changes and participants' flow scores. When beta power decreases
were considered as the expected pattern, the correlation coefficient
was r = 0.49. In contrast, when beta power increases were assumed
to be the expected pattern, the correlation coefficient was slightly
higher at r = 0.51.

These results suggest that the relationship between EEG activity
and flow states remains similar regardless of how beta power
changes are interpreted. While both conditions show a moderate
correlation, the small difference in coefficients highlights the
uncertainty surrounding beta power behaviour in flow states.
Further investigation is needed to determine the most appropriate
interpretation of beta activity in this context.

2.8 Discussion, conclusion and future work

This study examined the relationship between EEG power changes
and flow states, revealing a moderate correlation. When beta
decreases were assumed to align with flow, the correlation was r =
0.49; when increases were assumed, it was r=0.51. These findings
suggest a link between EEG and flow but highlight sensitivity to
beta power assumptions.

Significant data loss due to noise, likely from poor electrode
placement, compromised signal quality and reduced reliability. I
have been developing a live impedance measurement feature that
could help future studies improve electrode placement and real-
time signal monitoring to minimize artifacts.

The uncertainty around beta power behaviour underscores the need
for further research with larger samples, varied tasks, and refined
EEG processing. Despite limitations, this study provides
preliminary evidence linking EEG activity to flow states,
warranting further investigation.
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Figure 1: Visualization of EEG power changes (delta: blue, theta:
orange, alpha: green, beta: red) for random subjects. Green
values represent "good data" used in the correlation plots.
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Figure 2: Visualization of the correlation between subjects’ flow
scores and EEG consistency with the literature, under the
condition where beta power shows a negative change.
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Figure 3: Visualization of the correlation between subjects’' flow
scores and EEG consistency with the literature, under the
condition where beta power shows a positive change.
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