Part 1 — Exploration & insightful graphs

Initially, we wanted to examine the raw data and our augmentations. We used different
methods to create different versions of the same image using crop, flip and affine.
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Next, we wanted to examine the class distribution in a dataset. We chose this as it is a
useful graph to understand if there is an imbalance in the data between classes.
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Since the validation set was created using a
random sample from the train set it makes
sense that the distribution is slightly
imbalanced. On the other hand, the test set
contains evenly distributed 10,000 samples as
expected.
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Part 2 — Training and Evaluation
1. VanillaMLP

We began by implementing a simple fully-connected neural network — Vanilla
MLP — consisting only of linear layers and ReLU activations. We used the
CIFAR10 dataset to train the model using various combinations of
hyperparameters.

First experiment

Input size: 3*32*32 (will remain the same in all experiments)
Learning rate: 0.001

Batch size: 64

Hidden size: 512

# of hidden layers: 3

Epochs: 10
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The training loss and the validation loss consistently decreased up to epoch #7
where the validation loss increased again, could be as a consequence of



2.

overfitting. The training accuracy increased to ~0.38 However, the validation
accuracy dropped to ~0.35 on the last 3 epochs.

More experiments are needed to further examine this theory and determine
whether it was a result of an overfit or maybe the model had a minor setback
that could have been optimized further. We concluded the model can use more
epochs to further examine the process and maybe reach a plateau.

Imporved VanillaMLP

To further improve performance, we implemented a deeper and regularized
version of the model with the goal of enhancing generalization and reducing
overfitting. We added the following:

e Deeper Archtecture: Increased the number of hidden layers to 16, allowing
the model to learm more complex representations.

e Batch normalization: applied after each linear transformation to stabilize
and accelerate training.

e Dropout (rate=0.2): added after each activation layer to prevent overfitting
by randomly deactivating neurons during training.

e Activation Function: Used ReL.U for non-linearity after each hidden layer.

e Softmax Output: Applied at the end to produce probability distribution over
the classes.

e Optimizer: Adam

e Loss Fun: CrossEntropyLoss

Best network

Input size =3 * 32 * 32
Hidden size = 512

Num classes = 10

Num hidden layers = 16
Num epochs = 300
Dropout p=0.2
Transformation p=1
Learning rate = 0.001
Batch size = 2056

These hyperparameters were the result of different experiments. We "played"
with the number of hidden layers, epochs batch size and hidden layers size. We
even increased the dropout p. eventually we concluded the model worked best
with a large batch size and a decreased hidden layer size. We chose to leave the
learning rate the same.
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After completing the training process,

we evaluated the final model on the test
025 set. The results were:

Test Loss: 1.9433,

0 50 100 150 200 250 300 Test Accuracy: 51.63%

These results show that the model was able to generalize accurately, slightly more than
half of the time. But the accuracy is still relatively low for a classification task like
CIFAR-10. We assume that the model has learned useful patterns in the training data,
but not enough to achieve high generalization performance.



Part 3 — CIFAR10-human

In this section, we compare the model's predictions with human-derived labels from the
CIFAR-10H dataset. This helps assess how closely the model's confidence aligns with
human uncertainty.

Q: Which group did the model agree with more: the humans or the true labels? Why do
you think that is the case?

A: Interestingly, the model agreed with both the true labels and the human labels in 22
out of the 79 mismatches.

Example images tagged by the true label, the model and the human label.
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Q: Are there any interesting insights you can extract from the graph?

A: Examining the example images, we can observe various patterns of agreement
between the three labels. In the first image on the left, the model correctly identified
the animal as a deer, while the human misclassified it as a dog. Although this mistake
is understandable, the model performed more accurately, possibly due to differences
in neural network processing compared to the human brain.

In other cases, we see discrepancies across all three labels. For instance, in the last
image, neither the human nor the model correctly identified the cat—though each
made a different error. While we can intuitively grasp why humans might mislabel
certain images, deciphering the model’s decision-making process is far more
complex. Despite experimenting with various hyperparameter configurations, fully
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understanding the reasoning behind its predictions remains elusive and may even be
impossible.
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To evaluate how closely the model's predictions align with human judgment, we
plotted a scatter plot comparing the model's probability for the true label (x-axis)
against the average human probability for the true label (y-axis).
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or more challenging cases.

Ultimately, this graph illustrates that the model and human perceive patterns
differently. While humans rely on intuition and experience, the model follows
mathematical representations that can sometimes lead to unexpected errors. These
differences highlight the need for further analysis to understand where and why the
model deviates from human judgment.



Part 4 — Bonus

Q: Is there a correlation? In other words, does the model have difficulties with images
for which human subjects had high reaction times (took time to label)?

A: Correlation between Model Probabilities and Reaction Time: We calculated a
Pearson correlation coefficient of 0.014 with a p-value of 0.165 between the model's
probabilities for the true label and the human reaction times. This low correlation
coefficient and the high p-value (above 0.05) suggest that there is no strong
statistically significant linear relationship between the model's confidence in its
correct predictions and the time it took humans to label the same images [implied
from our conversation history regarding the interpretation of correlation metrics]. In
other words, the model wasn't necessarily less sure about images that humans took
longer to label, or vice versa.

Q: Are the images with high reaction times also images that the human subjects
mislabeled? Did the model label them the same as the humans, or did it predict the
correct label regardless?

A:

Human Accuracy and High Reaction Time Images: The average human accuracy
we found was 0.992, which is very high. However, we identified 79 images that were
mislabelled by humans, and a significant portion of these (74 images) had high
reaction times. This finding indicates a connection between longer human
deliberation times and a higher likelihood of making labelling errors [implied from
our conversation history analysing this specific finding]. It appears that when humans
struggled more with an image (took longer to respond), they were also more prone to
misclassifying it. Part 3 of the assignment, as mentioned in ["Assignment 1.pdf": 2],
focused on the CIFAR10-Human dataset where these human labelling experiments
were conducted, allowing for this type of analysis.

Model Performance on High Reaction Time Images: The agreement rate of our
model with the human labels on high reaction time images was 0.392, and the model's
accuracy on these same images was 0.393. These low rates suggest that our neural
network model also struggled with the images that humans found difficult (those
with high reaction times).

The fact that both humans and the model performed poorly on these images indicates
that these images might inherently be more challenging to classify. However, the slight
difference between the agreement rate with human labels (0.392) and the model's
accuracy (0.393) implies that the model did not necessarily make the same mistakes
as the humans on these difficult images. While both struggled, some of their incorrect
predictions have differed. Our best-performing model from Part was used for this
comparison.



