
Introduction: Hodgkin–
Huxley Model

The Hodgkin–Huxley model is a mathematical description of the electrical
activity of the neuron. It was developed by Alan Hodgkin and Andrew Huxley in
1952, and it has been widely used to understand and predict the behavior of
neurons. The model captures the essential features of action potential
generation and propagation, including the role of voltage-gated ion channels.

by Anton Pasternak

Background: The Neuron
and Action Potential

Neurons are specialized cells that transmit information throughout the nervous
system. The action potential is a brief electrical signal that travels along the axon
of a neuron.

It is generated by the rapid opening and closing of voltage-gated ion channels,
allowing ions to flow across the cell membrane. This results in a transient
change in the electrical potential of the neuron, known as depolarization.

Koch’s
"Biophysics of Computation"

The book, "Biophysics of Computation: Information Processing in Single
Neurons," by Christof Koch, is a valuable resource for understanding the
Hodgkin–Huxley model.

Koch meticulously explains the theoretical foundation of the model and provides
a comprehensive overview of its implementation and analysis.
This is the main equation that I’ve focused on:

In order to achieve an appropriate recreation of the model, I had to look for a lot
more data and equations, left by Koch.

Next are all the equations and parameters I’ve gathered from Koch.

Key Equations and
Parameters
The Hodgkin–Huxley model is a system of four coupled differential equations
that describe the dynamics of the membrane potential and the gating variables.

The equations are defined by parameters that represent the maximum
conductances of different ion channels and the time constants for activation and
inactivation (I’ve called them just “gates” in my code).

Potassium Gates:

Sodium Gates:

Key Equations and
Parameters
I’ve also taken the currents equations from Koch’s book and the parameters he
provided as well.

Potassium Current Sodium Current Leak Current

Membrane capacitance

Model Implementation in
Python

The Hodgkin–Huxley model was implemented in Python using the NumPy and SciPy libraries
and was plotted using Matplotlib library.
This allowed for efficient numerical integration of the differential equations governing the
model. The code was written to be modular and extensible, allowing for easy modification and
experimentation with different parameters and initial conditions.

I wanted to have the same “baseline” (starting point) for my exploration of the model, as Koch’s
data, so I took the liberty to “adjust” a little the way I inject current to the system.

I found that in my model to generate an action potential when injecting current for 0.5msec, a
current amplitude of 13.28nA is needed but in Koch’s book it was supposed to be 0.4nA. I’ve
checked everything and found no error, (probably the difference comes from temperature
variables that were no included here) so I decided to add an amplifier middle-man between the
injection needle itself and its “control panel”. The amplifier takes the wanted current be to
injected by the needle, amplifies it by a constant that “fixes” the sufficient current (that needs
to be input into the “control panel”) for action potential to be 0.4nA instead of 13.28nA (every
injection is amplified by 33.2).

Simulation Results and Analysis:
The action potential The action potential is the interesting behavior of the neuron that accurse when

the right conditions are met. Here we can see the effect of an externally injected
current, on the membrane voltage of the neuron.

This is a plot of the voltage of the
membrane as a function of time
(and data about the injection that
can be changed at the widget
below the plot).

In this graph we can see that the
input current was around 0.39nA
and was 0.5msec long.

The neuron goes through
depolarization and repolarization,
but no action potential was
generated here, yet.

Simulation Results and Analysis:
The action potential

In contrast, in this graph we
can see that the injection
current was sufficient to
generate an action potential
in the neuron.
The current here is a little
higher: 0.4nA.

Simulation Results and Analysis:
The N, M and H Gates The simulation results reveal the dynamics of the gating variables N, M, and H,

which represent the activation of sodium channels, activation of potassium
channels, and inactivation of sodium channels, respectively.

Here we can see the way that the
gates behave through the whole
time (100msec).

The first plot is the behavior of
the gates at the insufficient
current injection.

This second plot is of the slightly
larger injection that generated
the action potential.

Simulation Results and Analysis:
The N, M and H Gates

A little zoom in on the
interesting areas for
your pleasure

(From Koch)

Simulation Results and
Analysis:
Rheobase and Pulse Duration

The rheobase is the minimum current required to elicit an action potential in a
neuron. It is a key parameter in understanding the excitability of the neuron.

The simulation results showed that the rheobase decreases as the duration of
the stimulus increases.

Simulation Results and Analysis:
Rheobase as a Function of Pulse
Duration

Here we can see a graph of the rheobase as a function
of pulse duration that was made by a LOT of
measurements of the minimum current that triggered an
action potential with each duration (on a scale of
0.1msec from 0.1 to 5 [msec]).

Simulation Results and Analysis:
The action potential, again
In here we’ll continue to explore the action potential behavior
when the duration of the pulse is changed.

Here (down) is the last action potential that was generated in
the previous graph, a current of around 0.07nA for 5msec.

If we just increase the duration, it looks almost the same
that’s why we’ll continue next with “cranking it up”.

Simulation Results and Analysis:
The action potential, Burst-fire

Here I updated the pulse to be as
the original 0.4nA that we used
earlier and something interesting is
happening, we can see that there
are bursts of action potentials

Simulation Results and Analysis:
The action potential, Burst-fire

And when we increase the
pulse amplitude from 0.4 to 4,
we see that there’s more peaks
and the height of each peak is
lower, so the voltage threshold
changes with time when a
strong current is injected.

Simulation Results and Analysis:
The action potential, Burst-fire Frequency as a
Function of Pulse Strength

Here I stayed with the 50msec I
used before, and we can see
here that each point
represents the frequency fire-
rate of the neuron when it is
injected with different pulse
strength

Simulation Results and
Analysis: Refractory
Period
The refractory period is the time after an action potential during which is less
likely to fire another action potential.

This is an important mechanism for regulating neuronal firing rate and in order
to prove that there is a refractory period I’ll assume that there is no refractory
period and run some tests in the attempt find a contradiction.

So, if I assume there is no refractory period then the neuron should fire again
after the first action potential just as likely every time I try to inject two currents.

Simulation Results and
Analysis: Refractory Period

I’ll start by injecting a current to the membrane, twice with some time
between the injections. Koch called the time that passed from the
moment when the neuron first repolarized to 0mv, until the second
injection, delta time .

We can see that we get a contradiction because
the “distance” (delta_time) between the

injections, ultimately affects the generation of
the second spike (lower right graph)

delta_time = 20 [msec]

delta_time = 30 [msec]

delta_time = 10 [msec]

Simulation Results and Analysis:
Relative Refractory Period

Here I am looking for the
relative refractory period by
going to the values provided by
Koch. He says that the relative
refractory period is around
delta=11ms and the ratio
between the spikes is spoused
to be small, he had 15%
difference, as you can see here
my model is at 29% already
and still no second spike.

delta_time = 11 [msec]

Simulation Results and Analysis:
Relative Refractory Period

But at 30% there is another sp ike.
This is the relative refractory
when I tried to inject the sam e
after 11m s I g ot no second sp ike
when the second current becam e
little b ig g er (by a third m ore) the
action potential was g enerated.

delta_time = 11 [msec]

Simulation Results and Analysis:
Absolute Refractory Period

N ow to look for the
refractory p eriod , which is
sup p osed to accrue on
low d elta tim e, so I
to b e 1m s and I raised the
current a lo t b ut still no

delta_time = 1 [msec]

Simulation Results and
Analysis: Refractory Period

And as you can see, when the
current ratio is above 21.5 then
the second spike returns :)

This is the absolute refractory
period because in order to
induce a second spike, the
second current had to be
larger by 20500% which is
nowhere near physiological
values.

delta_time = 1 [msec]

Conclusion and
Comparison to Original
Model

The recreation of the Hodgkin–Huxley model in Python successfully the original model's
behavior. The simulation results demonstrate the model's accuracy in capturing the
dynamics of action potential generation and propagation.

Although I tried to go as close as possible to the original experiments, I had some
deviations (that probably came from uncounted variables of temperature and neuron
sample size) , these are the main ones I noticed:
• The original pulse current that generated the first action potential was lower than

mine by a factor of 33.2 (mine=13.28[nA], original=0.4[nA]).

• The original ratio that generated the second action potential was supposed to be
around 15%, but I got 30%.

Thank you for reading, bey :)

