
Introduction: Hodgkin–
Huxley Model

The Hodgkin–Huxley model is a mathematical description of the electrical 
activity of the neuron. It was developed by Alan Hodgkin and Andrew Huxley in 
1952, and it has been widely used to understand and predict the behavior of 
neurons. The model captures the essential features of action potential 
generation and propagation, including the role of voltage-gated ion channels.

by Anton Pasternak



Background: The Neuron 
and Action Potential

Neurons are specialized cells that transmit information throughout the nervous 
system. The action potential is a brief electrical signal that travels along the axon 
of a neuron.

It is generated by the rapid opening and closing of voltage-gated ion channels, 
allowing ions to flow across the cell membrane. This results in a transient 
change in the electrical potential of the neuron, known as depolarization.



Koch’s
"Biophysics of Computation"

The book, "Biophysics of Computation: Information Processing in Single 
Neurons," by Christof Koch, is a valuable resource for understanding the 
Hodgkin–Huxley model.

Koch meticulously explains the theoretical foundation of the model and provides 
a comprehensive overview of its implementation and analysis.
This is the main equation that I’ve focused on:

In order to achieve an appropriate recreation of the model, I had to look for a lot 
more data and equations, left by Koch.

Next are all the equations and parameters I’ve gathered from Koch.



Key Equations and 
Parameters
The Hodgkin–Huxley model is a system of four coupled differential equations 
that describe the dynamics of the membrane potential and the gating variables.

The equations are defined by parameters that represent the maximum 
conductances of different ion channels and the time constants for activation and 
inactivation (I’ve called them just “gates” in my code).

Potassium Gates:

Sodium Gates:



Key Equations and 
Parameters
I’ve also taken the currents equations from Koch’s book and the parameters he 
provided as well.

Potassium Current Sodium Current Leak Current

Membrane capacitance 



Model Implementation in 
Python

The Hodgkin–Huxley model was implemented in Python using the NumPy and SciPy libraries 
and was plotted using Matplotlib library.
This allowed for efficient numerical integration of the differential equations governing the 
model. The code was written to be modular and extensible, allowing for easy modification and 
experimentation with different parameters and initial conditions.

I wanted to have the same “baseline” (starting point) for my exploration of the model, as Koch’s 
data, so I took the liberty to “adjust” a little the way I inject current to the system.

I found that in my model to generate an action potential when injecting current for 0.5msec, a 
current amplitude of 13.28nA is needed but in Koch’s book it was supposed to be 0.4nA. I’ve 
checked everything and found no error, (probably the difference comes from temperature 
variables that were no included here) so I decided to add an amplifier middle-man between the 
injection needle itself and its “control panel”. The amplifier takes the wanted current be to 
injected by the needle, amplifies it by a constant that “fixes” the sufficient current (that needs 
to be input into the “control panel”) for action potential to be 0.4nA instead of 13.28nA (every 
injection is amplified by 33.2).



Simulation Results and Analysis:
The action potential The action potential is the interesting behavior of the neuron that accurse when 

the right conditions are met. Here we can see the effect of an externally injected 
current, on the membrane voltage of the neuron.

This is a plot of the voltage of the 
membrane as a function of time 
(and data about the injection that 
can be changed at the widget 
below the plot).

In this graph we can see that the 
input current was around 0.39nA 
and was 0.5msec long.

The neuron goes through 
depolarization and repolarization, 
but no action potential was 
generated here, yet.



Simulation Results and Analysis:
The action potential

In contrast, in this graph we 
can see that the injection 
current was sufficient to 
generate an action potential 
in the neuron. 
The current here is a little 
higher: 0.4nA.



Simulation Results and Analysis:
The N, M and H Gates The simulation results reveal the dynamics of the gating variables N, M, and H, 

which represent the activation of sodium channels, activation of potassium 
channels, and inactivation of sodium channels, respectively.

Here we can see the way that the 
gates behave through the whole 
time (100msec).

The first plot is the behavior of 
the gates at the insufficient 
current injection.

This second plot is of the slightly 
larger injection that generated 
the action potential.



Simulation Results and Analysis:
The N, M and H Gates

A little zoom in on the 
interesting areas for 
your pleasure

(From Koch)



Simulation Results and 
Analysis:
Rheobase and Pulse Duration

The rheobase is the minimum current required to elicit an action potential in a 
neuron. It is a key parameter in understanding the excitability of the neuron.

The simulation results showed that the rheobase decreases as the duration of 
the stimulus increases.



Simulation Results and Analysis: 
Rheobase as a Function of Pulse 
Duration

Here we can see a graph of the rheobase as a function 
of pulse duration that was made by a LOT of 
measurements of the minimum current that triggered an 
action potential with each duration (on a scale of 
0.1msec from 0.1 to 5 [msec]).



Simulation Results and Analysis:
The action potential, again
In here we’ll continue to explore the action potential behavior 
when the duration of the pulse is changed. 

Here (down) is the last action potential that was generated in 
the previous graph, a current of around 0.07nA for 5msec. 

If we just increase the duration, it looks almost the same 
that’s why we’ll continue next with “cranking it up”.



Simulation Results and Analysis:
The action potential, Burst-fire

Here I updated the pulse to be as 
the original 0.4nA that we used 
earlier and something interesting is 
happening, we can see that there 
are bursts of action potentials 



Simulation Results and Analysis:
The action potential, Burst-fire

And when we increase the 
pulse amplitude from 0.4 to 4, 
we see that there’s more peaks 
and the height of each peak is 
lower, so the voltage threshold 
changes with time when a 
strong current is injected.



Simulation Results and Analysis:
The action potential, Burst-fire Frequency as a 
Function of Pulse Strength

Here I stayed with the 50msec I 
used before, and we can see 
here that each point 
represents the frequency fire-
rate of the neuron when it is 
injected with different pulse 
strength



Simulation Results and 
Analysis: Refractory 
Period
The refractory period is the time after an action potential during which is less 
likely to fire another action potential.

This is an important mechanism for regulating neuronal firing rate and in order 
to prove that there is a refractory period I’ll assume that there is no refractory 
period and run some tests in the attempt find a contradiction.

So, if I assume there is no refractory period then the neuron should fire again 
after the first action potential just as likely every time I try to inject two currents.



Simulation Results and 
Analysis: Refractory Period

I’ll start by injecting a current to the membrane, twice with some time 
between the injections. Koch called the time that passed from the 
moment when the neuron first repolarized to 0mv, until the second 
injection, delta time .

We can see that we get a contradiction because 
the “distance” (delta_time) between the 

injections, ultimately affects the generation of 
the second spike (lower right graph)

delta_time = 20 [msec]

delta_time = 30 [msec]

delta_time = 10 [msec]



Simulation Results and Analysis: 
Relative Refractory Period

Here I am looking for the 
relative refractory period by 
going to the values provided by 
Koch. He says that the relative 
refractory period is around 
delta=11ms and the ratio 
between the spikes is spoused 
to be small, he had 15% 
difference, as you can see here 
my model is at 29% already 
and still no second spike.

delta_time = 11 [msec]



Simulation Results and Analysis: 
Relative Refractory Period

But at 30%  there is another sp ike.
This is the relative refractory 
when I tried  to  inject the sam e 
after 11m s I g ot no second  sp ike 
when the second current becam e 
little b ig g er (by a third  m ore) the 
action potential was g enerated.

delta_time = 11 [msec]



Simulation Results and Analysis: 
Absolute Refractory Period

N ow to look for the 
refractory p eriod , which is 
sup p osed  to  accrue on 
low d elta tim e, so  I 
to  b e 1m s and  I raised  the 
current a lo t b ut still no  

delta_time = 1 [msec]



Simulation Results and 
Analysis: Refractory Period

And as you can see, when the 
current ratio is above 21.5 then 
the second spike returns :)

This is the absolute refractory 
period because in order to 
induce a second spike, the 
second current had to be 
larger by 20500% which is 
nowhere near physiological 
values.

delta_time = 1 [msec]



Conclusion and 
Comparison to Original 
Model

The recreation of the Hodgkin–Huxley model in Python successfully the original model's 
behavior. The simulation results demonstrate the model's accuracy in capturing the 
dynamics of action potential generation and propagation.

Although I tried to go as close as possible to the original experiments, I had some 
deviations (that probably came from uncounted variables of temperature and neuron 
sample size) , these are the main ones I noticed:
• The original pulse current that generated the first action potential was lower than 

mine by a factor of 33.2 (mine=13.28[nA], original=0.4[nA]).

• The original ratio that generated the second action potential was supposed to be 
around 15%, but I got 30%.

Thank you for reading, bey :) 


